Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Toxicol ; 23(11-12): 349-363, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37728714

RESUMO

The physiological impact of cannabinoid receptor agonists is of great public health interest due to their increased use in recreational and therapeutic contexts. However, the body of literature on cannabinoid receptor agonists includes multiple confounding variables that complicate comparisons across studies, including route of administration, timeline across which phenotypes are observed, agonist dose, and sex of the study cohort. In this study, we characterized the impact of sex and route of administration on Δ9-tetrahydrocannabinol (THC)-induced changes in cardiopulmonary phenotypes in mice. Using noninvasive plethysmography and telemetry, we monitored heart rate and respiration in the same cohort of animals across aerosol, oral gavage, subcutaneous, and intraperitoneal administrations of THC (0-30 mg/kg THC for oral gavage, subcutaneous, and intraperitoneal, and 0-300 mg/ml THC for aerosol). All routes of THC administration altered respiratory minute volume and heart rate, with the direction of effects typically being consistent across dependent measures. THC primarily decreased respiration and heart rate, but females given oral gavage THC showed increased heart rate. Intraperitoneal and subcutaneous THC produced the longest-lasting effects, including THC-induced alterations in physiological parameters for up to 10 h, whereas effects of aerosolized THC were short lived. The fastest onset of effects of THC occurred for aerosolized and intraperitoneal THC. Altogether, the work herein establishes the impact of dosing route on THC-induced heart rate and respiratory alteration in male and female mice. This study highlights important differences in the timeline of cardiopulmonary response to THC following the most common preclinical routes of administration.


Assuntos
Agonistas de Receptores de Canabinoides , Dronabinol , Humanos , Camundongos , Masculino , Feminino , Animais , Dronabinol/toxicidade , Agonistas de Receptores de Canabinoides/toxicidade , Frequência Cardíaca , Aerossóis , Respiração
2.
Artigo em Inglês | MEDLINE | ID: mdl-37253145

RESUMO

Introduction: Excessive alcohol consumption can result in alcoholic liver disease (ALD). There is no FDA-approved drug to specifically treat ALD and current management approaches have limited efficacy. Past studies indicate that monoacylglycerol lipase (MAGL) inhibition can have a positive impact on nonalcoholic fatty liver disease. However, the effect of MAGL inhibition in ALD has not been reported. Materials and Methods: We tested the highly selective and clinically evaluated MAGL inhibitor ABX-1431 in the Lieber-DeCarli liquid alcohol diet-induced model of ALD in C57BL/6 mice. Results: ABX-1431 failed to reduce ALD-associated steatosis and elevated levels of liver enzymes associated with hepatic injury. Furthermore, survival rate declined with increasing doses of ABX-1431 when compared with mice administered vehicle only. Conclusion: These data suggest that MAGL inhibition does not improve ALD and is unlikely to be a good strategy for this condition.

3.
Behav Brain Res ; 400: 113059, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33309737

RESUMO

The G-protein-coupled receptor APLNR and its ligands apelin and ELABELA/TODDLER/apela comprise the apelinergic system, a signaling pathway that is critical during development and physiological homeostasis. Targeted regulation of the receptor has been proposed to treat several important diseases including heart failure, pulmonary arterial hypertension and metabolic syndrome. The apelinergic system is widely expressed within the central nervous system (CNS). However, the role of this system in the CNS has not been completely elucidated. Utilizing an Aplnr knockout mouse model, we report here results from tests of sensory ability, locomotion, reward preference, social preference, learning and memory, and anxiety. We find that knockout of Aplnr leads to significant effects on acoustic startle response and sex-specific effects on conditioned fear responses without significant changes in baseline anxiety. In particular, male Aplnr knockout mice display enhanced context- and cue-dependent fear responses. Our results complement previous reports that exogenous Apelin administration reduced conditioned fear and freezing responses in rodent models, and future studies will explore the therapeutic benefit of APLNR-targeted drugs in rodent models of PTSD.


Assuntos
Receptores de Apelina/fisiologia , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
4.
Mamm Genome ; 31(7-8): 205-214, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32860515

RESUMO

Airway neutrophilia is correlated with disease severity in a number of chronic and acute pulmonary diseases, and dysregulation of neutrophil chemotaxis can lead to host tissue damage. The gene Zfp30 was previously identified as a candidate regulator of neutrophil recruitment to the lungs and secretion of CXCL1, a potent neutrophil chemokine, in a genome-wide mapping study using the Collaborative Cross. ZFP30 is a putative transcriptional repressor with a KRAB domain capable of inducing heterochromatin formation. Using a CRISPR-mediated knockout mouse model, we investigated the role that Zfp30 plays in recruitment of neutrophils to the lung using models of allergic airway disease and acute lung injury. We found that the Zfp30 null allele did not affect CXCL1 secretion or neutrophil recruitment to the lungs in response to various innate immune stimuli. Intriguingly, despite the lack of neutrophil phenotype, we found there was a significant reduction in the proportion of live Zfp30 homozygous female mutant mice produced from heterozygous matings. This deviation from the expected Mendelian ratios implicates Zfp30 in fertility or embryonic development. Overall, our results indicate that Zfp30 is an essential gene but does not influence neutrophilic inflammation in this particular knockout model.


Assuntos
Proteínas de Ligação a DNA/deficiência , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Imunomodulação/genética , Fatores de Transcrição/deficiência , Alelos , Animais , Biomarcadores , Sistemas CRISPR-Cas , Células Cultivadas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Edição de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
G3 (Bethesda) ; 8(2): 687-693, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242385

RESUMO

Neutrophil chemotaxis to the airways is a key aspect of host response to microbes and a feature of multiple pulmonary diseases including asthma. Tight regulation of this recruitment is critical to prevent unwanted host tissue damage and inflammation. Using a mouse (Mus musculus) model of asthma applied to the Collaborative Cross population, we previously identified a lung gene expression quantitative trait locus (eQTL) for Zinc finger protein 30 (Zfp30) that was also a QTL for neutrophil recruitment and the hallmark neutrophil chemokine CXCL1. The Zfp30 eQTL is defined by three functionally distinct haplotypes. In this study, we searched for causal genetic variants that underlie the Zfp30 eQTL to gain a better understanding of this candidate repressor's regulation. First, we identified a putative regulatory region spanning 500 bp upstream of Zfp30, which contains 10 SNPs that form five haplotypes. In reporter gene assays in vitro, these haplotypes recapitulated the three previously identified in vivo expression patterns. Second, using site-directed mutagenesis followed by reporter gene assays, we identified a single variant, rs51434084, which explained the majority of variation in expression between two out of three haplotype groups. Finally, using a combination of in silico predictions and electrophoretic mobility shift assays, we identified ZFP148 as a transcription factor that differentially binds to the Zfp30 promoter region harboring rs51434084. In conclusion, we provide evidence in support of rs51434084 being a causal variant for the Zfp30 eQTL, and have identified a mechanism by which this variant alters Zfp30 expression, namely differential binding of ZFP148.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Mucosa Respiratória/metabolismo , Fatores de Transcrição/genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Haplótipos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo
6.
PLoS Comput Biol ; 12(2): e1004744, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26844769

RESUMO

MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16)) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.


Assuntos
DNA/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Algoritmos , Composição de Bases/genética , Sequência de Bases , Sítios de Ligação , Biologia Computacional , DNA/química , Humanos , Leucemia/genética
7.
Nat Genet ; 47(6): 607-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938942

RESUMO

Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases.


Assuntos
Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Receptores de Glucocorticoides/metabolismo , Adolescente , Antineoplásicos Hormonais/farmacologia , Sequência de Bases , Criança , Pré-Escolar , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Lactente , Recém-Nascido , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Recidiva Local de Neoplasia/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prednisolona/farmacologia , Proteólise , Transcrição Gênica , Células Tumorais Cultivadas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...